A q-Foata Proof of the q-Saalschütz Identity

نویسنده

  • Doron Zeilberger
چکیده

Dominique Foata [2] [6] gave a beautiful combinatonal proof or the following binomial coefficients identity, that is trivially equivalent to the famous PfaCSaalschutz identity: a + b a + e b + c (a + b + r-n)! (a + k) (e + k) (h + k)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Combinatorial Proof of a Symmetric q-Pfaff-Saalschütz Identity

We give a bijective proof of a symmetric q-identity on 4φ3 series, which is a symmetric generalization of the famous q-Pfaff-Saalschütz identity. An elementary proof of this identity is also given.

متن کامل

THE q-TANGENT AND q-SECANT NUMBERS VIA BASIC EULERIAN POLYNOMIALS

The classical identity that relates Eulerian polynomials to tangent numbers together with the parallel result dealing with secant numbers is given a q-extension, both analytically and combinatorially. The analytic proof is based on a recent result by Shareshian and Wachs and the combinatorial one on the geometry of alternating permutations.

متن کامل

On some Generalized q-Eulerian Polynomials

The (q, r)-Eulerian polynomials are the (maj−exc, fix, exc) enumerative polynomials of permutations. Using Shareshian and Wachs’ exponential generating function of these Eulerian polynomials, Chung and Graham proved two symmetrical q-Eulerian identities and asked for bijective proofs. We provide such proofs using Foata and Han’s three-variable statistic (inv−lec, pix, lec). We also prove a new ...

متن کامل

Abel–rothe Type Generalizations of Jacobi’s Triple Product Identity

Abstract. Using a simple classical method we derive bilateral series identities from terminating ones. In particular, we show how to deduce Ramanujan’s 1ψ1 summation from the q-Pfaff–Saalschütz summation. Further, we apply the same method to our previous q-Abel–Rothe summation to obtain, for the first time, Abel–Rothe type generalizations of Jacobi’s triple product identity. We also give some r...

متن کامل

On Zudilin's q-Question about Schmidt's Problem

We propose an elemantary approach to Zudilin’s q-question about Schmidt’s problem [Electron. J. Combin. 11 (2004), #R22], which has been solved in a previous paper [Acta Arith. 127 (2007), 17–31]. The new approach is based on a q-analogue of our recent result in [J. Number Theory 132 (2012), 1731–1740] derived from q-Pfaff-Saalschütz identity.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 8  شماره 

صفحات  -

تاریخ انتشار 1987