A q-Foata Proof of the q-Saalschütz Identity
نویسنده
چکیده
Dominique Foata [2] [6] gave a beautiful combinatonal proof or the following binomial coefficients identity, that is trivially equivalent to the famous PfaCSaalschutz identity: a + b a + e b + c (a + b + r-n)! (a + k) (e + k) (h + k)
منابع مشابه
A Combinatorial Proof of a Symmetric q-Pfaff-Saalschütz Identity
We give a bijective proof of a symmetric q-identity on 4φ3 series, which is a symmetric generalization of the famous q-Pfaff-Saalschütz identity. An elementary proof of this identity is also given.
متن کاملTHE q-TANGENT AND q-SECANT NUMBERS VIA BASIC EULERIAN POLYNOMIALS
The classical identity that relates Eulerian polynomials to tangent numbers together with the parallel result dealing with secant numbers is given a q-extension, both analytically and combinatorially. The analytic proof is based on a recent result by Shareshian and Wachs and the combinatorial one on the geometry of alternating permutations.
متن کاملOn some Generalized q-Eulerian Polynomials
The (q, r)-Eulerian polynomials are the (maj−exc, fix, exc) enumerative polynomials of permutations. Using Shareshian and Wachs’ exponential generating function of these Eulerian polynomials, Chung and Graham proved two symmetrical q-Eulerian identities and asked for bijective proofs. We provide such proofs using Foata and Han’s three-variable statistic (inv−lec, pix, lec). We also prove a new ...
متن کاملAbel–rothe Type Generalizations of Jacobi’s Triple Product Identity
Abstract. Using a simple classical method we derive bilateral series identities from terminating ones. In particular, we show how to deduce Ramanujan’s 1ψ1 summation from the q-Pfaff–Saalschütz summation. Further, we apply the same method to our previous q-Abel–Rothe summation to obtain, for the first time, Abel–Rothe type generalizations of Jacobi’s triple product identity. We also give some r...
متن کاملOn Zudilin's q-Question about Schmidt's Problem
We propose an elemantary approach to Zudilin’s q-question about Schmidt’s problem [Electron. J. Combin. 11 (2004), #R22], which has been solved in a previous paper [Acta Arith. 127 (2007), 17–31]. The new approach is based on a q-analogue of our recent result in [J. Number Theory 132 (2012), 1731–1740] derived from q-Pfaff-Saalschütz identity.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Eur. J. Comb.
دوره 8 شماره
صفحات -
تاریخ انتشار 1987